- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Berseneva, Anna A. (2)
-
Brandt, Amy J. (2)
-
Buck, III, Charles N. (2)
-
Chen, Donna A. (2)
-
Chusov, Denis (2)
-
Garashchuk, Sophya (2)
-
Lamm, Benjamin W. (2)
-
Leith, Gabrielle A. (2)
-
Ly, Richard T. (2)
-
Pellechia, Perry J. (2)
-
Rice, Allison M. (2)
-
Shustova, Natalia B. (2)
-
Smith, Mark D. (2)
-
Stefik, Morgan (2)
-
Stephenson, Kenneth S. (2)
-
Vannucci, Aaron K. (2)
-
Yarbrough, Brandon J. (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The effect of donor (D)–acceptor (A) alignment on the materials electronic structure was probed for the first time using novel purely organic porous crystalline materials with covalently bound two‐ and three‐dimensional acceptors. The first studies towards estimation of charge transfer rates as a function of acceptor stacking are in line with the experimentally observed drastic, eight‐fold conductivity enhancement. The first evaluation of redox behavior of buckyball‐ or tetracyanoquinodimethane‐integrated crystalline was conducted. In parallel with tailoring the D‐A alignment responsible for “static” changes in materials properties, an external stimulus was applied for “dynamic” control of the electronic profiles. Overall, the presented D–A strategic design, with stimuli‐controlled electronic behavior, redox activity, and modularity could be used as a blueprint for the development of electroactive and conductive multidimensional and multifunctional crystalline porous materials.more » « less
-
Leith, Gabrielle A.; Rice, Allison M.; Yarbrough, Brandon J.; Berseneva, Anna A.; Ly, Richard T.; Buck, III, Charles N.; Chusov, Denis; Brandt, Amy J.; Chen, Donna A.; Lamm, Benjamin W.; et al (, Angewandte Chemie)Abstract The effect of donor (D)–acceptor (A) alignment on the materials electronic structure was probed for the first time using novel purely organic porous crystalline materials with covalently bound two‐ and three‐dimensional acceptors. The first studies towards estimation of charge transfer rates as a function of acceptor stacking are in line with the experimentally observed drastic, eight‐fold conductivity enhancement. The first evaluation of redox behavior of buckyball‐ or tetracyanoquinodimethane‐integrated crystalline was conducted. In parallel with tailoring the D‐A alignment responsible for “static” changes in materials properties, an external stimulus was applied for “dynamic” control of the electronic profiles. Overall, the presented D–A strategic design, with stimuli‐controlled electronic behavior, redox activity, and modularity could be used as a blueprint for the development of electroactive and conductive multidimensional and multifunctional crystalline porous materials.more » « less
An official website of the United States government
